Home

余弦定理证明

余弦定理

对于任意三角形,假设三边为a,b 和 c,c 边对应的角为 γ ,则有如下关系:

c2=a2+b22abcosγ

前置推导

使用泰勒方法展开三个初等函数

sinx 的无穷级数展开

sinx=x13!x3+15!x517!x7+

推导如下:

:sinx=a0+a1x+a2x2+a3x3+(1)x=0a0:sinx|x=0=a0=0(1):(sinx)=cosx=a1+2a2x+3a3x2+(2)x=0:a1=cosx|x=0=1(2):(cosx)=sinx=2a2+32a3x+(3)(3)x=0:sinx|x=0=2a2=0,a2=0(3):(sinx)=cosx=321a3+432a4x+543x2+(4)(4)x=0:cosx|x=0=3!a3=1,a3=13!x=0a4=0,a5=15!,a6=0,a7=17!:sinx=x13!x3+15!x517!x7+

cosx 的无穷级数展开

sinx无穷级数泰勒方法展开,cosx的无求级数展开为:

cosx=112!x2+14!x416!x6+

ex 的无穷级数展开

sinx无穷级数泰勒方法展开,ex 展开为:

ex=1+x+12!x2+13!x3+14!x4+15!x5+16!x6+17!x7+

欧拉公式

:ex=1+x+12!x2+13!x3+14!x4+15!x5+16!x6+17!x7+ixx,:eix=1+ix12!x213!ix3+14!x415!ix516!x617!ix7+:eix=(112!x2+14!x416!x6+)+i(x13!x3+15!x517!x7+)sinxcosx:eix=cosx+isinx

欧拉公式得到三角函数和差积关系

x+yx:ei(x+y)=cos(x+y)+isin(x+y):ei(x+y)=eixeiy=(cosx+isinx)(cosy+isiny)=(cosxcosysinxsiny)+i(sinxcosy+sinycosx):cos(x+y)=cosxcosysinxsinysin(x+y)=sinxcosy+sinycosx

 

证明余弦定理

假设三角形为:

CDABDBCD=α,DCA=β:γ=α+β:c=AB=BD+AD=asinα+bsinβ:c2=a2sin2α+2absinαsinβ+b2sin2β=a2(1cos2α)+2absinαsinβ+b2(1cos2β)=a2+b2(a2cos2α+b2cos2β)+2absinαsinβ(5)CBDCDA:CD=acosα=bcosβ:a2cos2α+b2cos2β=2CD2(6):sinαsinβ=cosαcosβcos(α+β)2abγ=α+β:2absinαsinβ=2abcosαcosβ2abcos(α+β)=2CD22abcosγ(7)(6)(7)(5):c2=a2+b22CD2+2CD22abcosγ=a2+b22abcosγ:c2=a2+b22abcosγ